北京农林科学院林业果树研究所安装了一套封闭式FluorCam叶绿素荧光成像系统,该系统将为果树的栽培、遗传育种、种质评价、贮藏加工等研究提供强大助力。
安装培训现场,售后工程师使用老师提供的核桃叶片和核桃果实进行了测试:
对正常核桃叶片(下RGB图左侧)和黄化核桃叶片(下RGB图右侧)使用叶绿素荧光淬灭程序(Quenching)进行测量。可见正常叶片的荧光衰减率(2.69)、最大光化学效率Fv/Fm(0.76)、有效光化学效率φPSII(0.13)均明显高于黄化叶(分别为0.72、0.62、0.04),而黄化叶NPQ(2.34)值明显高于正常叶片(0.58)。说明黄化严重影响了核桃叶片的光合作用:一方面降低了叶片的光能转化效率,另一方面提高了热耗散(NPQ),以应对光抑制和光损伤。
对正常核桃果实(下RGB图左侧)和果皮有黑斑的核桃果实(下RGB图右侧)同样使用叶绿素荧光淬灭程序(Quenching)进行测量,下图为叶绿素荧光参数成像图。
FluorCam叶绿素荧光成像系统适用于存在叶绿素、能够进行光合作用的几乎所有样品,突破了叶绿素荧光仪在样品大小、形状、数量的局限性。对于果树、蔬菜等植物具有独一无二的优势:既能用于快速、高通量测量叶片等常规样品,也能用于测量绿色蔬菜、果实。近年来,FluorCam叶绿素荧光成像系统越来越多地用于采后生理、贮藏保鲜等领域。
以下介绍几个FluorCam叶绿素荧光成像 “叶果两用”的案例图片。
黄瓜
不同基因型黄瓜(暗绿和光绿)的叶和果光合特性
(由中国农业大学、北京农林科学院与EcoLab实验室合作完成)
西蓝花
丁香油及其成分对西蓝花叶光合特性的影响
西蓝花采后黄化过程中光合活性的变化
苹果
左图:热胁迫对不同基因型苹果叶的光系统II活性(Fv/Fm)的影响;右图:不同温度热水处理后贮藏苹果的光合响应(Fv/Fm)
参考文献
1.Sui X, Shan N, Hu L, et al. The complex character of photosynthesis in cucumber fruit[J]. Journal of experimental botany, 2017, 68(7): 1625-1637.
2.Synowiec A, Możdżeń K, Skoczowski A. Early physiological response of broccoli leaf to foliar application of clove oil and its main constituents[J]. Industrial Crops and Products, 2015, 74: 523-529.
3.Luo F, Cai J H, Kong X M, et al. Transcriptome profiling reveals the roles of pigment mechanisms in postharvest broccoli yellowing[J]. Horticulture research, 2019, 6(1): 1-14.
4.Huo L, Sun X, Guo Z, et al. MdATG18a overexpression improves basal thermotolerance in transgenic apple by decreasing damage to chloroplasts[J]. Horticulture research, 2020, 7(1): 1-15.
5.Herppich W B, Maggioni M, Huyskens-Keil S, et al. Optimization of Short-Term Hot-Water Treatment of Apples for Fruit Salad Production by Non-Invasive Chlorophyll-Fluorescence Imaging[J]. Foods, 2020, 9(6): 820.